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Abstract. Multiphase patterns are found in a mean-field model of a singly-resonant optical parametric
oscillator that converts a pump field at frequency 3ω into signal and idler fields at frequencies 2ω and ω.
A complex Ginzburg-Landau equation without diffusion and with a quadratic phase-sensitive nonlinear
term is derived under single-longitudinal and paraxial propagation approximations. Owing to the phase-
matched multistep parametric process ω + ω = 2ω, phase locking of the resonated signal field is possible
with three distinct phase states. Three-armed rotating spirals, target patterns and light filamentation are
found by a numerical analysis of the mean-field equation.

PACS. 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity,
and optical spatio-temporal dynamics – 42.65.Ky Harmonic generation, frequency conversion –
05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 05.45.Xt Synchronization; coupled
oscillators

1 Introduction

The formation of complex spatial and spatio-temporal
structures in nonlinear optical systems has been the sub-
ject of an intensive research in the past few years [1–3].
Patterns as a result of a symmetry-breaking bifurcation
have been predicted and observed in a wide variety of
nonlinear optical systems, and major efforts have been
paid toward a comprehensive and general description of
these phenomena on the basis of universal pattern-forming
mechanisms. Since the pioneering works by Oppo et al.
and by Staliunas [4,5], much attention has been devoted
to the study of optical patterns sustained by a quadratic
(χ(2)) nonlinearity in the process of optical parametric os-
cillation (OPO) [4–12]. The extension of the earlier results
to nondegenerate processes revealed at once a deep differ-
ence between pattern formation phenomena in degenerate
versus nondegenerate processes [7,10]. The basic reason
thereof stems from the fact that, in case of a degenerate
OPO, signal and idler fields are indistinguishable both in
frequency and polarization and the down-converted field
is phase-locked to the pump field. Conversely, in a non-
degenerate process signal and idler fields are usually not
phase locked and their phase difference is free and may
be subjected to, e.g., stochastic fluctuations in presence
of noise. This circumstance reflects the form of order pa-
rameter equations that describe pattern formation in the
two cases: order-parameter equations with broken phase
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invariance for a degenerate OPO, such as parametrically-
driven Ginzburg-Landau or real Swift-Hohenberg equa-
tions [6,8,9], phase invariant equations for a nondegener-
ate OPO, such as complex Ginzburg-Landau or complex
Swift-Hohenberg equations [7,10,12].

From the point of view of optical patterns, the exis-
tence of phase locking in the degenerate OPO is appeal-
ing since, even in absence of any modulational instabil-
ity, complex spatial structures and some form of localized
states may occur owing to the coexistence, in different spa-
tial domains, of two equivalent homogeneous states that
differ each other by a π phase rotation. The formation of
spatial structures in the phase-bistable degenerate OPO
and the dynamics of domain walls that separate different
phase-locked states have received indeed a great and in-
creasing interest very recently, which major emphasis put
toward the study of the dynamics of domain walls [13–18],
the formation of labyrinth patterns [13] and of new types
of localized structures [15,19–21]. Though the dynamics
of two phase states is exclusive for a degenerate OPO,
phase locking may occur as well in a special class of non-
degenerate OPOs that convert a pump field at frequency
3ω into signal and idler fields at frequencies ω and 2ω
[22–25]. Owing to the particular 1:2:3 ratios among sig-
nal, idler and pump waves, under suitable control of phase
matching the multistep (degenerate) process 2ω = ω + ω
may simultaneously occur [26], which is responsible for
phase locking [25]. As compared to the degenerate OPO,
phase locking allows here for the existence of three differ-
ent phase states, which are obtained each other by a 2π/3
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phase rotation. The plane-wave (temporal) dynamics of
the self-phase-locked OPO in a doubly- or triply-resonant
configuration has been recently investigated in reference
[25], whereas pattern formation in these devices has been
considered by the present author in references [27,28] in
case of a weakly phase-matched multistep process. In par-
ticular, in reference [28] three-armed spiral waves have
been shown to exist in a doubly-resonant OPO as a re-
sult of the phase tristability, and a 3ω parametrically-
driven Ginzburg-Landau equation was derived to account
for these structures.

In this paper we study the formation of multiphase
patterns in a singly–resonant self-phase locked nondegen-
erate OPO, and show that, even without resonating the
idler field, a rich variety of spatial and spatio-temporal
structures, including three-armed spiral waves previously
found for a doubly-resonant device, as well as new ones,
can be observed. This is an important aspect from an
experimental viewpoint, where simple configurations are
more likely, as well as from a theoretical viewpoint, since
the complex dynamical scenario found here is rather un-
usual for a singly-resonant device. The mean-field equa-
tion that describes the dynamics of the resonated signal
field inside the cavity is shown to be a parametrically-
driven Ginzburg-Landau equation, similar to that derived
for the doubly-resonant configuration in reference [28] and
generally found in 3ω parametrically-forced systems near
an Hopf bifurcation [29–31], but with two distinctive as-
pects: the absence of diffusion, i.e. of wavenumber selec-
tion at the onset of instability, and the dependence of the
quadratic phase-sensitive nonlinear term on the pump pa-
rameter.

The paper is organized as follows. In Section 2 the ba-
sic model and the mean-field equation of a singly-resonant
OPO in the frequency divide-by-three configuration are
detailed. In Section 3 the uniform solutions of the mean-
field equation are derived and the phase locking-unlocking
transition is discussed, together with a linear stability
analysis of the phase-locked solutions. In Section 4 pattern
formation is studied by numerical analysis of the mean-
field equation and existence of rotating three-armed spi-
ral waves, dynamic target patterns and complicated light
filaments is pointed out. Finally, in Section 5 the main
conclusions are outlined.

2 Mean-field model

We consider a simple model of a singly-resonant nondegen-
erate OPO, that consists of either a singly-ended mono-
lithic cavity of length l, completely filled by a nonlinear
χ(2) medium [Fig. 1a], or of a ring cavity with planar mir-
rors [Fig. 1b], in which an injected plane-wave pump field
at frequency 3ω is converted into signal and idler fields
at frequencies ω and 2ω, respectively. The signal field is
the only wave resonated inside the cavity, and T denotes
the output power transmission of the output mirror at
frequency ω. The injected plane-wave pump field of am-
plitude E , as well as the generated idler field, escape from
the cavity after one round-trip, as shown in Figure 1. The
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Fig. 1. Schematic of a singly-resonant OPO for the 3ω →
2ω+ω down-conversion process in a monolithic (a) and in a ring
(b) cavity. In (a), the signal field at frequency ω is resonated
while the pump and idler waves escape after one round-trip;
the rear crystal face has high reflectivity for the three fields.
In (b), pump and idler waves cross the crystal once; a second
crystal for a further χ(2) cascading process may be inserted in
a second arm of the cavity (dashed curve).

nonlinear crystal is assumed to be phase matched for both
the down conversion process 3ω = ω+2ω and for the mul-
tistep process 2ω = ω + ω. It should be noticed that,
though simultaneous phase matching using birefringent
techniques in a single crystal might be in practice a fortu-
itous circumstance, simultaneous and independent control
of phase matching for the two processes can be achieved
using nowadays available quasi phase-matching methods
in two-section periodically-poled crystals or two separate
crystals [24,32]. In the present work, we will assume per-
fect phase matching for the down-conversion process, i.e.
k(3ω) = k(2ω) + k(ω), whereas we allow for a wavevector
mismatch ∆k = k(2ω)− 2k(ω) for the multistep process,
with a coherence length lc = π/∆k less than the inter-
action length. A mean-field equation for the normalized
amplitude A1 of resonated signal field, which accounts for
diffraction effects in the paraxial approximation, can be
derived using a standard technique, previously adopted for
singly-resonant parametric devices [8,33], starting from
the propagation wave equations for pump, signal and idler
fields after the introduction of the single-longitudinal ap-
proximation and eliminating the not-resonated fields (i.e.,
pump and idler waves) from the dynamics. In the spirit of
the mean-field limit, the signal field suffers small change
after each round-trip propagation, and its amplitude A1 is
assumed, at leading order, uniform along the cavity axis z.
The mean-field equation then has the general form [33]:

∂A1

∂t
=
∆Aprop

1 +∆Acav
1

TR
(1)

where ∆Aprop
1 and ∆Acav

1 are the changes of intracavity
signal field A1 in one cavity round-trip due to propagation
(diffraction and nonlinear wave interaction with pump and
idler waves) and cavity effects (cavity losses and detun-
ing), and TR is the cavity round-trip time. The change in
the intracavity field due to linear cavity losses and phase
shift after one cavity round-trip is given by:

∆Acav
1 = −γTR(1 + i∆)A1 (2)

where γ = T/2TR is the cavity decay rate for signal
field due to output coupling and ∆ = (ω1 − ωc)/γ is
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the normalized frequency detuning between the reference
frequency ω1 of signal field and the longitudinal cavity
eigenfrequency ωc closest to ω1. The validity of equa-
tion (2) is ensured, as usual, provided that T � 1 and
∆ be of order one, so that ∆Acav

1 /A1 is small and of or-
der ∼ T . To determine the change of intracavity signal
field due to round-trip propagation inside the crystal, we
start with the paraxial wave equations describing interac-
tion of pump, signal and idler fields for the simultaneous
parametric processes 3ω = 2ω + ω and 2ω = ω + ω, that
read (see, for instance, [26]):

∂A1

∂z
=

i
2k1
∇2A1 + gA3A

∗
2 + σA∗1A2 exp(−i∆kz) (3a)

∂A2

∂z
=

i
2k2
∇2A2 + gA3A

∗
1 −

σ

2
A2

1 exp(i∆kz) (3b)

∂A3

∂z
=

i
2k3
∇2A3 − gA1A2 (3c)

where:A1,A2, A3 are normalized slowly-varying envelopes
of signal, idler and pump waves; kl = k(ωl) (l = 1, 2, 3)
are the propagation wavevectors; ∆k = 2k1 − k2 is the
wavevector mismatch for the multistep process 2ω = ω+ω;
g and σ are the nonlinear coupling coefficients for down-
conversion and second-harmonic processes, respectively;
and ∇2 = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplacian.
Equations (3) are coupled with the boundary conditions:

A2(0, t) = 0, A3(0, t) = E , (4)

where E is the amplitude of incident pump field and z = 0
is assumed at the entrance face of the crystal. The in-
cident pump field is assumed to be a plane-wave or a
Gaussian or super-Gaussian beam with a flat phase at
the entrance of the crystal and with a Rayleigh range zR

much greater than the crystal length l (l/zR ∼ O(T )).
The nonlinear coupled wave equations (3a, 3b, 3c) can
be solved iteratively with the appropriate boundary con-
ditions [Eq. (4)] assuming small pump conversion. To do
that, it is worth introducing a right scaling for the fields
and rewriting equations (3) in a dimensionless form suited
for an iterative calculation [8]. For the sake of clearness,
we will refer to the monolithic cavity of Figure 1a, al-
though a similar analysis could be done for the ring ge-
ometry of Figure 1b. An inspection of the linear part of
equations (3) without diffraction terms reveals that the
parametric gain scales as ∼ (EgL)2, where L = 2l is the
cavity length. Since the threshold condition is attained
when (EgL)2 ∼ T , E must be of order ∼ (

√
T/gL); this

suggests us to set A3 = (
√
T/gL)B3, and to treat the

dimensionless field envelope B3 of O(1). In order to de-
termine the proper scaling for the fields A1 and A2, let
us set A1 = (

√
T/gL)B1T

α1 and A2 = (
√
T/gL)B2T

α2 ,
where the dimensionless amplitudes B1 and B2 are as-
sumed to be of order ∼ 1 and α1, α2 define the scaling
of the fields and should be determined from an inspection
of nonlinear terms in equations (3). From equation (3a) it
follows that the change of B1 in one round-trip due to non-
linear interaction with pump and idler waves is given by
∆BNL

1 ∼ Tα2−α1+1/2B∗2B3 + (σ/g)Tα2+1/2B∗1B2, where

the former contribution accounts for the down-conversion
process whereas the latter one is due to the multistep pro-
cess. In the spirit of the mean-field limit, we require that
these two terms be small and of order ∼ T . This yields
α1 = 0 and α2 = 1/2. Finally, the spatial variables are
scaled according to z = LZ, x = bX , y = Y b, where
b = (L/2k1T )1/2 is the typical spatial scale of the patterns
we will investigate. The chosen scaling for the transverse
spatial variables is justified by the requirement that the
field change due to diffraction in one cavity round-trip be
of the same order of magnitude as that due to nonlinear
χ(2) interaction and cavity effects. With these appropriate
scalings, equations (3) take the dimensionless form:

∂B1

∂Z
= iT∇2

XB1 + TB3B
∗
2 +

σ

g
exp(−i∆kLZ)B∗1B2

(5a)
∂B2

∂Z
= iT

(
k1

k2

)
∇2
XB2 +B3B

∗
1 −

1
2
σ

g
exp(i∆kLZ)B2

1

(5b)
∂B3

∂Z
= iT

(
k1

k3

)
∇2
XB3 − TB1B2 (5c)

with the boundary conditions:

B2(0, t) = 0, B3(0, t) =
EgL√
T
· (6)

In the limit T → 0, equations (5, 6) can be solved by a
power expansion of B1, B2 and B3 in powers of T . After
setting B1 = B

(0)
1 + TB

(1)
1 + T 2B

(2)
1 + ..., B2 = B

(0)
2 +

TB
(1)
2 + T 2B

(2)
2 + ..., B3 = B

(0)
3 + TB

(1)
3 + T 2B

(2)
3 + ...

in equations (5), a hierarchy of equations for successive
corrections to B1, B2 and B3 is obtained, which can be
easily integrated. By pushing the expansion up to O(T ),
one obtains for B1 the following expression:

B1(Z) = ψ + iTZ∇2
Xψ+|EgL|2Z2ψ− σ

2g
T
EgL√
T
q1(Z)ψ∗ 2

− 1
2

(
σ

g

)2

Tq2(Z)|ψ|2ψ +O(T 2), (7)

where ψ is the scaled signal field envelope at Z = 0, and
where we have set:

q1(Z) = 3
exp(−i∆kLZ)− 1

(∆kL)2
− Z 1 + 2 exp(−i∆kLZ)

i∆kL
,

(8a)

q2(Z) = −i
Z

∆kL
+

1− exp(−i∆kLZ)
(∆kL)2

· (8b)

Notice that, for ∆kL → 0, one has q1(Z) = q2(Z) ∼
Z2/2. The change of signal field due to propagation in
one cavity round-trip is then calculated as ∆Aprop

1 =
(
√
T/gL)[B1(1)− ψ]; after re-introduction of the original



60 The European Physical Journal D

ρ =
|Q1|p
Re(Q2)

=

�
[3 cos(∆kL)− 3 + 2∆kL sin(∆kL)]2 + [∆kL+ 2∆kL cos(∆kL) − 3 sin(∆kL)]2

(∆kL)2[1− cos(∆kL]

�1/2

· (15)

unscaled variables, it reads:

∆Aprop
1 = i

L

2k1
∇2A1 +

1
2
g2L2|E|2A1 +

σg

2
L2EQ1A

∗ 2
1

− σ2L2

2
Q2|A1|2A1, (9)

where we have set Q1 = q1(1) and Q2 = q2(1), i.e.:

Q1 = 3
exp(−i∆kL)− 1

(∆kL)2
− 1 + 2 exp(−i∆kL)

i∆kL
, (10a)

Q2 = −i
1

∆kL
+

1− exp(−i∆kL)
(∆kL)2

· (10b)

Notice that Re(Q2) > 0, i.e. the nonlinear cubic term in
equation (9) is saturating, which justifies the truncation
of the power expansion of the propagation equations (5)
up to the order ∼ T . Apart from diffraction effects rep-
resented by the Laplacian term, the right-hand side in
equation (9) describes the change of signal field as a re-
sult of three cascading χ(2) processes, which can be un-
derstood as follows. Photons at frequency ω are created
by two distinct processes: down-conversion of the pump
field, ω = 3ω − 2ω, and degenerate down-conversion of
idler field, ω = 2ω − ω. The idler photons at frequency
2ω are in turn created by means of the two following pro-
cesses: down-conversion of the pump, 2ω = 3ω − ω, and
second-harmonic generation, 2ω = ω + ω. The cascading
of these second-order processes then lead to the following
four third-order processes, two of them being degenerate:
ω = 3ω−(3ω−ω), 3ω−(ω+ω), (3ω−ω)−ω, and ω+ω−ω.

Using equations (2, 9), the mean-field equation (1)
takes the final form:

TR
∂A1

∂t
= −γTR(1 + i∆)A1 + i

L

2k1
∇2A1 +

1
2
g2L2|E|2A1

+
σg

2
L2EQ1A

∗ 2
1 −

σ2L2

2
Q2|A1|2A1 (11)

which is the main result of this section. Notice that the
cubic saturating nonlinearity in equation (11) arises solely
from the cascading process ω = ω + ω − ω, and no
pump depletion effects enter in the equation. In addi-
tion, for a nonvanishing value of ∆k, the cubic nonlin-
ear term also possesses an imaginary part, either positive
or negative, which is the usual Kerr effect due to χ(2)

cascading. The other cascading process ω = 3ω − ω − ω
leads to the appearance in the mean-field equation of a
quadratic phase-dependent nonlinear term, which is re-
sponsible for self-phase locking of signal field. A simpler
form for equation (11) can be derived after the change
of variables t → t/γ, ∇2 → (k1T/L)∇2 and with a suit-
able rescaling of amplitude and phase of A1 by setting

A1(x, y, t) = αu(x, y, t) exp(iφ). In particular, since the
phase of the injected pump wave E is assumed to be in-
dependent of transverse variables, the amplitude α and
phase φ can be chosen such that the real part of the cubic
nonlinear coefficient be equal to one and the coefficient of
the quadratic nonlinear term be real and negative. This
leads to the following canonical form for the mean-field
equation:

∂u

∂t
= −(1 + i∆)u+ µu+ i∇2u− ρ√µu∗ 2

− (1 + iβ)|u|2u, (12)

where we have set:

µ =
(gL|E|)2

T
, (13)

β =
Im(Q2)
Re(Q2)

=
sin(∆kL)−∆kL

1− cos(∆kL)
, (14)

see equation (15) above.

In its present form, equation (12) is a parametrically-
forced Ginzburg-Landau equation that describes the dy-
namics of a spatially-extended oscillatory system near a
Hopf bifurcation when it is resonantly-forced at a fre-
quency 3ω, where ω is its natural frequency [29–31], with
µ playing the role of the pump (or bifurcation) parameter.
A similar equation was recently derived by the author as
an order parameter equation for the frequency divide-by-
three OPO but in a doubly–resonant configuration, where
both signal and idler waves are resonated in the optical
cavity [28]. As compared to the previous analysis of refer-
ence [28], there are here a few distinctive aspects that is
worth pointing out:

(i) the nonlocal (Laplacian) term in equation (12) is
purely diffractive, and there is no mechanism for
wavenumber selection in the linearized equation;

(ii) the form of equation (12) is valid regardless the sign
of signal detuning ∆;

(iii) the coefficient of the quadratic phase-sensitive non-
linear term depends on the pump parameter µ;

(iv) saturation of the instability in equation (12) arises
from the multistep process instead of from pump de-
pletion.

As a final remark, notice that the coefficients ρ and β
in equation (12) are not independent, but they are both
determined once the wavevector mismatch ∆k is assigned
according to equations (14, 15). The behavior of ρ and
β versus ∆kL is shown in Figure 2. Notice that the sign
of ∆kL determines the sign of β in equation (12), i.e.
the focusing (β < 0) or defocusing (β > 0) character of
the third-order nonlinearity; notice also that the minimum
of both ρ and |β| is attained at perfect phase matching,
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R =
2(µ− 1) + ρ2µ− 2β∆±

q
(2µ− 2 + µρ2 − 2β∆)2 − 4(1 + β2) [∆2 + (µ− 1)2]

2(1 + β2)
(17)

exp(3iφ) =
µ− 1−R+ i(∆+ βR)

ρ
√
Rµ

· (18)
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Fig. 2. Behavior of nonlinear coefficients β and ρ, entering in
equation (12), versus ∆kL as given by equations (14, 15).

∆kL = 0, at which β = 0 and ρ = 2−1/2. This means
that nowhere in the parameter space the forcing quadratic
nonlinear term in equation (12) may be assumed small.
In some more complicated geometries, β and ρ may be
however considered as independent parameters. This case
occurs, for instance, when a not-pumped second nonlin-
ear χ(2) crystal, phase-matched for the second-harmonic
process ω + ω = 2ω, is placed in a second arm of a ring
cavity, as shown in Figure 1b. In this case, the role of the
second crystal is to add, in equation (9), an additional
cubic nonlinear term as a result of a cascading χ(2) pro-
cess, with a complex-valued coefficient that depends on
the wavevector mismatch between signal and idler waves
in the second crystal. In this work, we will be mainly con-
cerned with the simplest case of the monolithic geometry
of Figure 1a, where equations (14, 15) are valid.

3 Uniform states and their stability

The mean-field equation (12) admits of the trivial zero
solution u = 0, corresponding to the OPO being below
threshold, that becomes unstable at µ = µth = 1 for
a perturbation with any wavenumber k. Owing to the
quadratic nonlinear term, the onset of instability is sub-
critical and the study of the dynamical development of
instability above threshold is a highly nonlinear problem.
Besides the trivial solution, the mean-field equation also
possesses phase-locked homogeneous states, which exist
and are stable in a wide range of parameter space (phase-
locking regime). These states are given by:

u±ph =
√
R exp(iφ), (16)

where R and φ are given by:

see equations (17, 18) above.

The double sign in equations (16, 17) defines two branches
of phase-locked states. Notice that, according to equa-
tion (18), for a given branch there are three allowed values

for the phase φ, which differ each other by a 2π/3 phase
rotation. The domain of existence of these phase-locked
states is defined by the following inequality:

2(µ− 1) + ρ2µ− 2β∆ >
√

4(1 + β2) [∆2 + (µ− 1)2].
(19)

Within the domain of existence, one can easily deter-
mine the domain of stability by linearizing equation (12)
around the fixed-point solution u±ph. After setting u =
u±ph + v1 exp(λt + ik · r) + v∗2 exp(λ∗t− ik · r), where k is
the wavevector of perturbation, λ = λ(k) its growth rate,
r = (x, y), and v1, v2 small amplitudes, one obtains the
following expression for the most unstable growth rate:

λ(k) = −1 + µ− 2R

+
√

(2µ−2−R)2−(3βR+3∆+k2)(βR −∆+ k2) (20)

where k = |k|. An instability at wavenumber k
arises whenever Re[λ(k)] > 0. An inspection of equa-
tions (17, 20) reveals that the lower branch of phase-locked
states, corresponding the lower sign in equation (17), is al-
ways unstable for a perturbation with zero wavenumber,
and hence we will disregard in the following such branch.
Depending on parameter values, the upper branch may be
stable or show a modulational instability within a finite
band of wavenumbers, with a most unstable wavenumber
kc lying inside the instability band. An example of bifur-
cation diagram for the phase-locked states, which assumes
the pump parameter µ as the control parameter, is shown
in Figure 3, together with the behavior of most unsta-
ble eigenvalue Re[λ(kc)] and band of unstable wavenum-
bers around kc. The domains of existence and stability of
the upper-branch phase-locked states largely depend on
the three control parameters: the pump parameter, µ; the
cavity detuning, ∆; and the phase mismatching parame-
ter, ∆kL. As an example, Figure 4 shows the domains of
existence and stability of the phase-locked states in the
(µ,∆kL) plane for a few values of detuning parameter ∆.

For parameter values where the inequality (19) is not
satisfied, there are not fixed point solutions to equa-
tion (12) and uniform solutions are oscillatory in time
(limit cycles). As an example, Figure 5 shows the transi-
tion from oscillatory to phase-locked states assuming the
cavity detuning ∆ as the control parameter. The transi-
tion, which occurs at ∆ = ∆c ∼ 0.7036, is similar to the
Andronov-van der Pol bifurcation [31,34], with stable and
unstable phase-locked states merging as ∆ approaches ∆c

from below, giving rise to a limit cycle for ∆ > ∆c [see
Fig. 5a]. For ∆ � ∆c, the limit cycle is a circle (the one
of the unforced complex Ginzburg-Landau equation), that
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Fig. 3. (a) Normalized amplitude R = |u| of phase-locked
state versus pump parameter µ. The dashed curve is the (un-
stable) lower branch, the solid curve the (stable) upper branch,
whereas the dotted curve is the modulationally unstable upper
branch. Parameter values are: ∆kL = 1.879 (ρ = 1, β = −0.71)
and ∆ = −1.5. (b) Behavior of the real part of most un-
stable eigenvalue (solid curve) and corresponding perturba-
tion wavenumber (dashed curve) versus pump parameter for
the upper branch of (a). The phase-locked solution exists for
µ & 4.50, whereas modulational instability occurs for µ . 6.52.
The shaded domain shows the band of unstable wavenumbers.
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Fig. 4. Boundary of existence (solid curves) and stability
domains (shaded areas) of the phase-locked solution in the
(µ,∆kL) plane for a few values of detuning ∆. (a) ∆ = −1,
(b) ∆ = 0, and (c) ∆ = 1. The domain of existence is on the
right hand side of the solid curves.
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Fig. 5. (a) Uniform solutions of equation (12) in the phase
space for a few values of cavity detuning ∆ and for µ = 2 and
∆kL = −1.879 (corresponding to ρ = 1 and β = 0.71). The
oscillatory regime occurs for ∆ > ∆c, with ∆c ∼ 0.7036. The
solid curves are the limit cycles corresponding to ∆ = 0.76
[curve (1)], ∆ = 1 [curve (2)] and ∆ = 10 [curve (3)]. Tri-
angles and crosses correspond to stable and unstable fixed
points, respectively, in the phase-locked regime for ∆ = 0.65.
(b) Period T of oscillations as a function of cavity detuning
in the oscillatory regime. Triangles refer to numerical simu-
lations, whereas the solid line corresponds to a fitting curve
T = κ/(∆−∆c)1/2, with κ = 3.2.

becomes deformed as ∆ gets close to ∆c [see Fig. 5a]. The
period T of the oscillating state close to the transition
point diverges as ∆ approaches ∆c from above with the
typical law T ∼ (∆−∆c)−1/2, as shown in Figure 5b. In
addition, in the phase-locked regime with ∆ close to ∆c

the system shows an excitable behavior, in the sense that
small perturbations around a stable phase-locked state
are damped, whereas large perturbations drive the system
to another stable state through an heteroclinic trajectory
[35].

The linear stability analysis of the uniform oscillatory
states and the existence of pattern-forming instabilities
in the oscillatory regime would require the determina-
tion of Floquet exponents λ± of the nonautonomous lin-
ear system obtained after linearization of equation (12)
around the uniform oscillating solution. This analysis goes
beyond the scope of the present work and will be not
given here; however, we point out that, for large values
of cavity detuning, λ± approach the eigenvalues λ± =
−(µ− 1)± {(µ− 1)2(1 + β2)− [k2 + β(µ− 1)]2}1/2 of the
unforced complex Ginzburg-Landau equation, for which a
Benjamin-Fair instability exists in the self-focusing case
(β < 0) [35].

4 Pattern formation

The main pattern-forming properties of equation (12) are
largely influenced by the existence of the quadratic phase-
sensitive nonlinear term, that leads to self-phase locking
of signal field in a wide range of parameter values. Such
properties are common to the generic ones encountered
in the problem of temporal forcing, at a frequency nω,
of a spatially-extended system near a Hopf bifurcation,
ω being the critical frequency of the Hopf bifurcation and
n an integer number [29]. In these systems, the resonant
forcing lead to the existence of n different phase-locked
states, that may undergo a wide variety of bifurcations.
For a sufficiently strong forcing, however, these states are
linearly stable, and the formation of inhomogeneous struc-
tures, composed by domains of different locked states sep-
arated by domain boundaries, is possible. In particular,
n-armed rotating spirals can be spontaneously formed, in
which n different phase domains coalesce into a common
point (vertex) and rotate around it. These properties have
been investigated in great detail for the n = 2 and n = 4
cases, the former case in reference [29], the latter one in
references [36,37]. The n = 3 resonant forcing case, which
applies to our mean-field equation (12), was briefly consid-
ered in the earlier work by Coullet and Emilsson [29] and,
more extensively, in few recent works [30,31]. In particu-
lar, in reference [31] the transition form the oscillatory to
the excitable regime was studied in detail in case of exact
resonant forcing, showing the transition from one-armed
phase spirals to three-armed amplitude spirals, as well as
the existence of other complex spatio-temporal structures.
Although equation (12) has not, strictly speaking, the nor-
mal form considered in references [29,31], it is neverthe-
less expected to observe similar spatio-temporal structures
[35]. We performed a numerical analysis of equation (12)
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Fig. 6. Taxonomy of near-field intensity patterns of signal
field in the self-focusing case (β < 0) as obtained by numerical
simulations of equation (12). The shaded area in the (µ,∆)
plane is the stability domain of phase-locked states, whereas
the solid curve is the boundary of existence of phase-locked
states (they exist on the right side of the solid curve). The
phase mismatch parameter is ∆kL = 1.879, corresponding to
ρ = 1 and β = −0.71.

and revealed the existence of different dynamical regimes
which are largely determined by the phase matching con-
dition, i.e. by the value of∆kL, and by the cavity detuning
∆. Our analysis is not intended to provide a comprehen-
sive and definitive view of the taxonomy of the dynamics
of equation (12) in the full parameter space, which is a
rather ambitious and nontrivial task, instead it is aimed to
show the richness of spatial and spatio-temporal dynamics
that may occur in a self-phase-locked singly-resonant OPO
device and to highlight the distinctive features of this de-
vice from the most studied two-phase bistable degenerate
OPO. Equation (12) was numerically integrated using a
split-step pseudospectral technique on a square domain
with typical spatial grids of 128× 128. The nonlocal term
in the equation (diffraction) is calculated in the wavevec-
tor (Fourier) space whereas the linear and nonlinear local
terms (pumping, detuning, nonlinear coupling) are com-
puted in the space domain; a fast Fourier transform is used
to shift from the space domain to the wavevector domain
at each time step. A superGaussian axially-symmetric
pump profile µ(x, y) = µ0 exp[−(r/w)2m] was assumed in
the numerical analysis in order to simulate realistic OPO
pumping conditions. A different dynamical scenario was
observed depending on the sign of the phase mismatching
term ∆kL, i.e. the focusing or defocusing character of the
third-order nonlinearity in equation (12). A more complex
behavior was found in the self-focusing case, which corre-
sponds to the existence of the Benjamin-Fair instability
for the unforced Ginzburg-Landau equation (see Sect. 3).
Figure 6 shows schematically the taxonomy of typical in-
tensity patterns in the self-focusing case (β < 0) that
spontaneously arise starting from a small noise added to
the zero solution for fixed values of the pump parameterµ0

and wavevector mismatch ∆kL when the cavity detuning

t=6680t=500t=10 t=50

Fig. 7. Snapshots at successive times of intensity (upper row)
and phase (lower row) of signal field showing the formation
from noise of a rotating three-armed spiral wave for a super-
Gaussian pump field (w = 34, m = 4, µ0 = 3) and for ∆ = 2.
By decreasing the size of the pump beam down to w = 20, a
homogeneous phase-locked state is obtained instead of a rotat-
ing spiral. The box size is 40 × 40 on a 128× 128 spatial grid;
time step: dt = 0.01.

∆ is varied; in the figure are also shown the boundary
of existence (solid curve) and domain of stability (shaded
area) of the phase-locked states in the (µ,∆) plane for a
flat pump. Numerical simulations show that phase-locked
states with different phases spontaneously grow from noise
in different spatial regions and rapidly saturate the ini-
tial instability; since the phase-locking mechanism is non-
linear, the process of phase-locking and saturation of in-
stability act simultaneously. Domain walls, that connect
different phase domains, appear as dark lines in the field
intensity, and their evolution may lead to different dynam-
ical scenarios depending on cavity detuning. For positive
and large values of detuning inside the stability domain of
phase-locked states, shrink or expansion of domain walls,
leading to a one dominating final phase-locked state, is
observed; as the detuning is decreased, different domains
coalescing in one point tend to rotate around it, and the
system show the spontaneous formation of three-armed
rotating spiral waves. Annihilation of counter-rotating spi-
rals is observed and, after some transient, the final state
typically comprises, within the integration domain, solely
one rotating spiral. Figures 7 and 8 show in detail the for-
mation from noise of three-armed rotating spirals for two
values of cavity detuning; the frames plot the intensity
and phase of the signal wave in the near-field at successive
times. As the detuning is decreased from ∆ ∼ 2 (Fig. 7)
to ∆ ∼ 1 (Fig. 8), the curvature of spiraling domains in-
creases, which allows to accommodate spiral waves in nar-
rower integration domains. Indeed, if the pump size in Fig-
ure 7 were decreased, a single homogeneous phase-locked
state, instead of a spiral wave, would have been the final
attractor. As the cavity detuning is further decreased, the
tendency of different domains to spiral vanishes, instead
spontaneous nucleation of target patterns, composed by
annular domains of alternating phase-locked states, is ob-
served, as shown in Figure 9. Target patterns are not in
a stationary state, instead continuous nucleation of a new
phase-locked state at the center of the structure, which
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t=4000t=500t=10 t=100

Fig. 8. Same as Figure 7 but for ∆ = 0.5. The pump size is
w = 18.7; the box size is 22 × 22 on a 128 × 128 spatial grid;
time step: dt = 0.005.

t=1430t=500t=10 t=50

Fig. 9. Same as Figure 8, but for ∆ = 0.

t=1000t=200t=80t=5

Fig. 10. Same as Figure 8, but for ∆ = −0.8.

moves toward the boundary, is typically observed. As the
detuning is further decreased, target patterns with less
regular structure are spontaneously nucleated in different
spatial regions of the integration domain, and they seem to
interact and evolve in an erratically way. As the detuning
is decreased to cross the stability boundary of Figure 6, a
complex spatio-temporal dynamics is observed, with the
continuous nucleation and annihilation of bubbles and the
formation of labyrinth structures (see Fig. 10). The com-
plex spatial structures in the near-field is accompanied,
in the far-field, with the excitation of a broad band of
wavevectors around k = 0, which is a signature of the
complex spatio-temporal dynamics. At further low values
of detuning to cross the oscillatory boundary, the forma-

t=2300t=1500t=100t=5

Fig. 11. Same as Figure 8, but for ∆ = −2.
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Fig. 12. Taxonomy of intensity and phase patterns of signal
field in the self-defocusing case (β > 0) as obtained by numer-
ical simulations of equation (12) assuming a superGaussian
pump (µ0 = 3, w = 18.7, m = 4) and for ∆kL = −1.879,
corresponding to ρ = 1 and β = 0.71. The shaded area in the
(µ,∆) plane is the stability domain of phase-locked states.

tion of disordered light filaments, which evolve erratically
in time, is observed which resembles the turbulent regimes
of the corresponding unforced Ginzburg-Landau equation
(see Fig. 11).

In the self-defocusing case (β > 0), the Benjamin-Fair
instability is prevented and the dynamics is less varie-
gated. A typical taxonomy of intensity and phase patterns,
at a fixed value of pump parameter and for a few values
of cavity detuning, is schematically shown in Figure 12.
In this case, as opposed to that of Figure 6, the domains
of existence and stability of the phase-locked states are
coincident. A superGaussian pump was used in the simu-
lations, with a pump size w = 18.7 and a superGaussian
order m = 4 as in Figure 6. For positive values of de-
tuning outside the phase-locking domain (∆ = 2 in the
figure), amplitude spirals appear in the signal intensity,
though phase locking is not effective. Such structures re-
semble the phase spiral defect dynamics of the correspond-
ing Ginzburg-Landau equation without forcing, and the
occurrence of dark lines in the field amplitude is due to
the weak forcing term. As the detuning is decreased, the
split of the phases into three locked states is observed
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approximately when crossing the phase-locking stability
boundary. In this case, domains of different phase states
typically shrink or expand, and vertex annihilation is ob-
served, until a final homogeneous phase-locked state is ob-
served (see the frames in Fig. 12 corresponding to ∆ = 0).
It should be noticed that, close to the stability bound-
ary, stable amplitude spirals may be still observed, but at
the boundary of the pumping region (see, e.g., the frames
in Fig. 12 corresponding to ∆ = 0.7). The stabilization
mechanism is probably due to a boundary effect, related
to the relatively slow decay of pumping in the outer re-
gion, where the lower forcing does not induce phase lock-
ing and defect phase dynamics similar to that occurring in
the unlocking case is possible. By decreasing the value of
detuning, three-armed spirals, in which three domains of
different phases coalesce into a vertex and rotate around
it, are observed (see the frames in Fig. 12 corresponding
to ∆ = −2). At lower values of detuning, a more complex
dynamics of domain walls is observed (see the frames in
Fig. 12 corresponding to ∆ = −3), which does not settle
down into a quiescent state.

As a final note, let us briefly discuss the experimental
feasibility of observing multiphase patterns in a singly-
resonant self-phase-locked OPO. Let us consider, as an
example, parametric down conversion of a pump field at
wavelength λ3ω = 532 nm in a periodically-poled lithium
niobate crystal with a double grating (see, e.g., Ref. [32])
and with plane faces dielectrically coated to provide a high
finesse cavity for the signal field (λω = 1596 nm). The
three fields are assumed to be extraordinary waves and
first-order quasi phase-matching is assumed for the pro-
cess 3ω → 2ω + ω, with an effective nonlinear coefficient
deff = 2d33/π ∼ 21 pm/V for lithium niobate. In phys-
ical units, the intensity I3ω of the pump wave is related
to the bifurcation parameter µ entering in equation (12)
through the relation I3ω = µ(ε0c30Tn1n2/(16l2d2

effω
2),

where: ε0 = 8.854 × 10−12 C2/N2 m2 is the vacuum di-
electric constant; c0 = 3 × 108 m/s is the speed of light
in vacuum; n1 = 2.137 and n2 = 2.176 are the extraor-
dinary refractive indices at signal and idler wavelengths;
T is the output mirror transmission; and l is the crystal
length. The spatial scale of patterns is given by Lspatial =
[lλω/(πTn1)]1/2. Assuming, for instance, T = 5% and
µ = 3, a pump intensity I3ω ∼ 17 kW/cm2 and a spa-
tial scale Lspatial ∼ 488 µm are obtained. For a Gaussian
pump with scaled parameters µ0 = 3 and w0 = 18, which
applies to the simulations shown in Figures 6 and 12, a
pump beam size W0 = w0Lspatial ∼ 8.8 mm and a pump
power level P3ω = πW 2

0 I3ω ∼ 40 kW are obtained. Such a
high pump level might be available using a pulsed pump
beam, with a pulse duration of ∼ 100–200 ns which is
enough for the formation of patterns.

5 Conclusions

In conclusion, a mean-field model of a singly-resonant non-
degenerate OPO in the frequency divide-by-three config-
uration has been presented, and a new class of patterns,

that result from the self-phase locking of signal field in-
duced by a multistep parametric process, have been found.
These patterns belong to the general class of resonant
patterns found in temporal forcing of spatially-extended
systems near a Hopf bifurcation, and hence bear a close
connection with similar structures recently observed and
studied in some detail in periodically-forced chemical sys-
tems [36–38]. The present analysis suggests that the class
of self-phase locked OPOs, even when a singly-resonant
configuration is employed, may provide a rich framework
in nonlinear optics to study complex pattern formation for
the n = 3 resonant forcing regime which has been until
now considered mostly in other fields of science.
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Ricercatori” and by the ESF Network PHASE.
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